
PHOTOLYSIS OF 1,2,4,5-TETRAKIS(TRIMETHYLSILYL)BENZENE¹ Robert West, Masaoki Furue and V. N. Mallikarjuna Rao Department of Chemistry, University of Wisconsin Madison, Wisconsin 53706, U.S.A.

(Received in USA 2 January 1973; received in UK for publication 6 February 1973)

Many valence bond isomers of benzene and alkylated or halogenated benzenes have been prepared,² but such isomers have not been reported for silyl substituted benzenes. Photolysis³ of 1,2,4,5-tetrakis(trimethylsilyl)benzene⁴ (1) in ether or 2-methylbutane gives a distribution of isomers rather different from that obtained for other substituted benzenes. Five isomeric products are produced: the 1,2,3,5-tetrasubstituted benzene 2, the benzvalenes 3 and 4, the fulvene 5 and a second fulvene (6) having structure 6a or 6b; no prismanes or Dewar benzenes were observed.

Compound $\underline{2}$ exhibited no infrared absorption characteristic of an olefinic bond, cyclopropane ring or vinylic hydrogen. The nmr spectrum showed a singlet at 2.38 (2H) τ and three singlets for trimethylsilyl groups at 9.61 (9H), 9.64 (18H) and 9.73 (9H) τ , establishing its structure as 1,2,3,5-tetrakis(trimethylsilyl)benzene.⁵ Compound $\underline{2}$ showed a cyclopropane ring deformation mode at 1025 cm⁻¹ in the infrared⁶ and an absorption in the double bond region at 1520 cm⁻¹.⁷ The nmr spectrum consisted of two singlets in the trimethylsilyl region at 9.91 (18H) and 9.92 (18H) τ and a singlet for the methine protons at 8.30 (2H) τ .⁸ The symmetrical benzvalene structure $\underline{2}$ is consistent with these observations and was further confirmed by the cmr spectrum. The formation of $\underline{2}$ from $\underline{1}$ requires no cleavage of the sigma bond framework. When heated at 120[°] in hexachlorobutadiene for 22 hr, $\underline{3}$ is converted to a mixture of $\underline{1}$, $\underline{2}$ and $\underline{5}$ in the ratio 5:3:2.

Compound $\frac{1}{2}$ was also assigned a benzvalene structure on the basis of the following evidence. The infrared spectrum showed an absorption at 1550 cm⁻¹ for a double bond⁷ and an absorption at 1000 cm⁻¹ for the ring deformation mode of cyclopropane.⁸ The nmr spectrum consisted of three singlets in the trimethylsilyl region at 9.86 (18H), 9.94 (9H) and 9.98 (9H) τ and two doublets at 8.50 (1H) and 4.12 (1H) τ ,⁸ J = 2.0 Hz. When heated at 90° for 1 hr, $\frac{1}{2}$ is completely converted to 2. The spectral data as well as the facile conversion to 2 is consistent with structure $\frac{1}{2}$ rather than 7 for this compound.

Compound 5 is a yellow crystalline solid, mp $111-112^{\circ}$. In the ultraviolet, it showed absorptions at 323 ($\epsilon = 1200$) 283 ($\epsilon = 13,000$) and 233 ($\epsilon = 3600$) nm. The infrared spectrum showed a strong band at 1469 cm⁻¹ consistent with a conjugated carbon-carbon double bond carrying silyl substituents. Two singlets were observed for trimethylsilyl groups in the nmr spectrum at 9.70 (18H) and 9.78 (18H) τ and a singlet at 3.35 (2H) τ for olefinic protons. The symmetrical fulvene structure 5 is quite consistent with these observations.

The second fulvene is a reddish orange solid which has not yet been obtained completely free of $\underline{2}$. The best samples were about 90% pure. The infrared spectrum of this mixture showed absorptions at 1480 and 1435 cm⁻¹. The nmr spectrum showed four singlets in the trimethylsilyl region at 9.70 (9H), 9.72 (9H), 9.81 (9H) and 9.82 (9H) τ and two doublets at 2.94 (1H) and 3.80 (1H) τ , J = 1.2 Hz. Structures <u>6a</u> or <u>6b</u> are in keeping with these observations, and an unambiguous choice between the two is not possible on the basis of presently available evidence.⁹ In the early stages of photolysis the product mixture consisted mainly of 1, 3 and 4

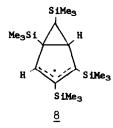

(Table I). Further irradiation produced $\underline{2}$, $\underline{5}$ and $\underline{6}$ while the concentration of $\underline{3}$ decreased steadily. Photolysis of $\underline{3}$ produced $\underline{4}$ and $\underline{5}$ in addition to small amounts of $\underline{1}$ and $\underline{2}$, while $\underline{4}$ produced $\underline{2}$ and $\underline{6}$ and a small amount of $\underline{3}$. These observations may mean that $\underline{3}$ is an intermediate in

TABLE I

Photolysis of 1 in Ether

	Product Composition %				
<u>1</u>	2	2	<u>4</u>	5	<u>6</u>
86	tr ^a	7	7	tr	0
25	tr	25	50	tr	tr
12	12	19	47	5	5
13	9	13	46	9	9
0	14	0	42	1 6	29
		-			
	86 25 12 13	<u>1</u> <u>2</u> 86 tr ^a 25 tr 12 12 13 9	1 2 3 86 tr ^a 7 25 tr 25 12 12 19 13 9 13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

the photo conversion of <u>1</u> to <u>2</u>, <u>4</u>, <u>5</u> and <u>6</u>. The reaction might take place through diradical intermediates¹⁰ such as <u>8</u> which may also be involved in the symmetry forbidden¹¹ rearomatization of

 $\underline{3}$ and $\underline{4}$ to $\underline{1}$ and $\underline{2}$. However, $\underline{3}$, $\underline{4}$, $\underline{5}$ and $\underline{6}$ might alternatively be formed <u>via</u> a symmetry allowed concerted process from excited states of $\underline{1}$.¹¹

We hope to carry out additional experiments with this and other systems which may shed further light on the mechanism.

FOOTNOTES AND REFERENCES

- Research sponsored by the Air Force Office of Scientific Research (NC) 0.A.R., USAF, Grant Nos. AF-AFOSR, 69-1772 and 70-1904.
- For reviews on this subject, see L. T. Scott and M. Jones, Jr., <u>Chem. Reviews</u>, <u>72</u>, 181 (1972) and E. E. van Tamelen, <u>Accounts Chem. Res.</u>, <u>5</u>, 186 (1972).
- Dilute solutions (0.5%) in ether or 2-methylbutane were photolyzed through quartz using a Nester-Faust medium pressure ultraviolet lamp at room temperature.
- 4. T. Brennan and H. Gilman, Chem. Ind. (London), 1489 (1967).
- 5. A similar rearrangement to the 1,2,3,5-isomer has been observed in the photolysis of 1,2,-4,5-tetra-t-butylbenzene, but no benzvalenes or fulvenes have been reported. See E. M. Arnett and J. M. Bollinger, <u>Tetrahedron Letters</u>, 3803 (1964).
- L. J. Bellamy, "Infrared Spectra of Complex Molecules," John Wiley and Sons, Inc., New York, N.Y., p. 29.
- 7. Absorption in this region seems to be characteristic of polysilylated ethylenes. See H. Bock and H. Siedl, <u>J. Organometal. Chem.</u>, <u>13</u>, 87 (1968); H. Bock and H. Siedl, <u>J. Amer</u>.
 <u>Chem. Soc.</u>, <u>90</u>, 5964 (1968).
- 8. K. E. Wilzbach, J. S. Ritscher and L. Kaplan, *ibid.*, <u>89</u>, 1031 (1967).
- 9. Based on the coupling constants, other possible structures for this isomer can be eliminated. See D. Meuche, M. Neuenschwander, H. Schaltegger and H. U. Schulunegger, <u>Helv. Chim. Acta</u>, <u>47</u>, 1211 (1964); M. Neuenschwander, D. Meuche and H. Schaltegger, <u>ibid.</u>, <u>47</u>, 1022 (1964).
- 10. D. Bryce-Smith and H. C. Longuet-Higgins, J. C. S. Chem. Comm., 593 (1966).
- R. Hoffmann and R. B. Woodward, <u>Accounts Chem. Res.</u>, <u>1</u>, 17 (1968) and references cited therein.